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probably indicates that any exciplex formed decays with a 
lifetime of less than nanoseconds. Ottolenghi12 has found that 
the spectra of arene-amine exciplexes normally contain bands 
similar to those found in the spectra of the related ion radicals. 
In particular, the exciplex from TMPD and biphenyl shows 
transitions like those of T M P D + and the biphenyl anion rad­
ical.13 A similar pattern is found in the exciplex spectrum of 
anthracene-A'.TV-diethylaniline.14 In each of these cases the 
absorptions are relatively strong. We presume that any anal­
ogous exciplex from TMPD and RUB should have been ob­
servable had it lived long enough. The fact that no exciplex 
emission is observed also limits that possible exciplex lifetime. 
The radiative lifetime of RUB fluorescence is~16 ns and the 
radiative lifetime of an exciplex should be of the same order 
of magnitude. We could have easily detected an emission 
quantum yield of 0.01; so the true lifetime of an exciplex would 
have to be less than a nanosecond to obliterate any detectable 
fluorescence. We conclude that either no exciplex is formed 
or that, if one is formed, it decays with a rate constant of 10'° 
s _ l or greater. 
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Photooxidation of Azines. Evidence for a 
Free-Radical Oxidation Initiated by Singlet Oxygen 

Sir: 

The reaction of singlet oxygen with conjugated dienes (re­
action with ?ran5,?ra«j'-l,4-diphenyl-l,3-butadiene1 (1) is 
shown below) is well known.2 The simplest view of this reaction 
as a concerted [2 + 4] cycloaddition is widely accepted.2 The 
photooxidation of acetone azine (3) to tetramethyl-1,2-
dioxa-4,5-diazine (4) has recently been reported,3 and the 
similarity of the course of this oxidation with that of dienes 

< " ^ ( > 
P h Ph 
1 I 

^ > ^ > 2 Y • N2 

3 4 i 

prompted us to investigate the mechanism for the azine oxi­
dation. We now report that the photooxidation of acetone azine 
proceeds via a free-radical pathway initiated by singlet 
oxygen. 

Competitive photooxidation4 of 3 vs. tetramethyl-4//-py-
razole (6) produces acetone (5) and diketone 7, respectively, 
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as the sole products by VPC analysis. The relative rate of ox­
idation (Table I) of 3 is three times that of 6, and this rate ratio 
is moderately independent of solvent and sensitizer. Since 3 
is significantly distorted from the cisoid conformation5 and 
since 6 is restricted to the cisoid form, the relative rate of oxi­
dation of 6 is predicted to be much larger than that of 3 as­
suming a concerted [2 + 4] cycloaddition. The observed rate 
ratio is inconsistent with this view. 

The results of the competitive photooxidation of 3 with 1 are 
provided in Table II. Both compounds are similary reactive 
(krelof 1 to 3, 4.5 in CDCb). This relative rate of oxidation of 
3 to 1 is moderately independent of sensitizer (Table II), and 
both reactions are inhibited by singlet oxygen quenchers, 
Dabco and /3-carotene (Table III). A remarkable difference 
in their reactivity, however, is that the oxidation of acetone 
azine is completely quenched while that of the diene is mod­
erately unaffected by the addition of 2,6-di-tert-butyl-p-cresol, 
a free-radical scavenger (Table III). These results are con-
Table I. Relative Rates of Photooxidation of Acetone Azine (3) 
and Tetramethyl-4W-pyrazole (6) 

solvent" sensitizer* A:rel (3:6)c 

CCl4 10-4MTPP 3.2 
CCl4 10"6MTPP 3.8 
CH2Cl2 10"4MTPP 3.3 
CHCl3 10"4MTPP 3.0 
CHCh 10-4MMB 3.8 
CDCl3 10-4MTPP 3.2 
CFCl3 IQ-4MTPP 3_1 

" [3]o = [6]n = 0.2 M; T = -20 0 C * TPP, tetraphenylporphyrin; 
MB, methylene blue. c Relative rates were determined by monitoring 
product formation by VPC: V4 in. X 10 ft 15%SE-30on Chromosorb 
P at 50 0 C. 

Table II. Effect of Solvent and Sensitizer on the Relative Rates of 
Photooxidation of Acetone Azine (3) and trans,trans-\,A-
Diphenyl-l,3-butadiene (1) 

solvent 

CDCl3* 
CDCl3* 
CDCl3* 
C6F6^ 
CC14

C 

sensitizer" 

TPP 
MB 
©-RB 
TPP 
TPP 

/t r e l( l :3) 

4.5 
3.3 
3.6 
3.6 
3.5 

" TPP (10-4 M), MB (10- 5 M), (E)-RB, polymer-anchored Rose 
Bengal12 (100 mg/10 mL). * [I]0 = [3]0 = 0.1 M; T = - 2 0 0C. <• [ I ] 0 
= [3]o = 0.025 M; T = O 0 C 
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Table III. Effect of Additive on the Relative Rates of 
Photooxidation of Acetone Azine (3) and trans,trans-] ,4-
Diphenyl-l,3-butadiene (1) 

additive" >trel (1:3) 

" [l]o = [3]0 = 0.1 M; T = -20 0C; sensitizer, 10~4 M TPP in 
CDCl3. 

Scheme I 
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sistent with a free-radical oxidation of 3 initiated by singlet 
oxygen. The similarity of relative rates of oxidation in solvents 
(CDCl3, CCl4) capable of halogen-chain reactions6 and in 
those incapable of such reactions (e.g., C6F6) indicates the 
unimportance of halogen-atom initiation in this oxidation. 

In view of recent reports6 of free-radical initiated photoox-
idations not involving singlet oxygen, additional experiments 
probing the involvement of singlet oxygen in the azine oxida­
tion were performed: (1) the oxidation of 3 is initiated7 by 
triphenyl phosphite ozonide, a known source of singlet oxygen;8 

and (2) the triphenyl phosphite ozonide initiated oxidation of 
3 is quenched by the addition of 1O-3 M /3-carotene. These 
results argue for singlet oxygen as the active oxidant. 

One possible mechanism for the initiation of this oxidation 
involves electron transfer from 3 to singlet oxygen, generating 
superoxide ion and azine cation radical. Subsequent initiation 
by superoxide ion seems unlikely since independent attempts 
to oxidize 3 with potassium superoxide were unsuccessful and 

I + "Q2 S> 3 + 0 , " 

since the photooxidation of 3 was uninhibited by tetranitro-
methane (Table III), a superoxide scavenger.9 Initiation and 
propagation by azine cation radical, however, may proceed by 
a mechanism (shown for 3 in Scheme I) analogous to that re­
ported by Tang et al.10 for the oxidation of the cation radical 
of ergosteryl acetate. Tetramethyl-1,2-dioxa-4,5-diazine (4), 
however, has never been observed in low temperature ' H NMR 
spectra of photooxidized solutions of 3 with our conditions. As 
a result, we believe that an alternate mechanism for the 
propagation steps (not involving products like 4) must be 
considered (Scheme II). Copolymerization of azine and oxygen 
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as shown in (2) might produce a polymeric azo peroxy radical 
8. Dimerization of 8, as with other peroxy radicals," would 
produce alkoxy radical 9 that would be expected to undergo 
/3 scission as shown in (3) to produce the observed products. 

Further characterization of the course of the photooxidation 
of azines is in progress. 
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